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Orthogonal expansions in product Jacobi polynomials with respect to the weight
function W:, ;(x)=>d

j=1 (1&xj)
:j (1+xj)

;j on [&1, 1]d are studied. For :j , ;j>&1
and :j+; j� &1, the Cesa� ro (C, $) means of the product Jacobi expansion
converge in the norm of L p(W:, ; , [&1, 1]d ), 1�p<�, and C([&1, 1]d ) if

$> :

d

j=1

max[:j , ; j]+
d
2

+max {0, & :

d

j=1

min[:j , ;j]&
d+2

2 = .

Moreover, for :j , ;j� &1�2, the (C, $) means define a positive linear operator if
and only if $��d

i=1 (:i+; i)+3d&1. � 2000 Academic Press
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1. INTRODUCTION AND MAIN RESULTS

For :, ;>&1, we denote by P (:, ;)
n the usual Jacobi polynomials of

degree n, which is orthogonal on [&1, 1] with respect to the weight
function w:, ; defined by

w:, ;(x)=c:, ;(1&x): (1+x);, where c:, ;=
1(:+;+2)

1(:+1) 1(;+1) 2:+;+1 .
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The weight function w:, ; is normalized to have the unit integral on
[&1, 1]. We denote the orthonormal Jacobi polynomial by p (:, ;)

n , which
differs from P (:, ;)

n by a normalization constant [20, p. 68]. We study the
Fourier orthogonal expansion in product Jacobi polynomials. Let :=(:1 , ..., :d )
and ;=(;1 , ..., ;d ) with :i , ;i>&1 for 1�i�d. The product Jacobi
weight function is defined by

W:, ;(x)= `
d

i=1

w:i , ;i
(xi)= `

d

i=1

c:i , ;i
(1&x i)

:i (1+xi)
;i,

where x=(x1 , ..., xd ) # [&1, 1]d. Let Nd
0 denote the set of nonnegative

integers. Then an orthonormal basis of polynomials in L2(W:, ; , [&1, 1]d )
is given by

P (:, ;)
k (x)= `

d

i=1

p (:, ;)
ki

(xi), k=(k1 , ..., kd ) # Nd
0 .

These polynomials are called the product Jacobi polynomials. Let f be a
Lebesgue integrable function with respect to W:, ; on [&1, 1]d. Its Fourier
orthogonal expansion with respect to W:, ; , called the product Jacobi
expansion of f, is defined by

ft :
�

m=0

:
|k|=m

ak ( f ) P (:, ;)
k , ak ( f )=|

[&1, 1] d
f (y) P (:, ;)

k (y) W:, ;(y) dy.

The nth partial sum of this expansion is defined by

Sn, d (W:, ; ; f, x) := :
n

m=0

:
|k|=m

ak ( f ) P (:, ;)
k (x). (1.1)

For $>0, the Cesa� ro (C, $) means of the product Jacobi expansion is
defined by

S $
n, d(W:, ; ; f )=\n+$

n +
&1

:
n

k=0
\n&k+$&1

n&k + Sk, d (W:, ; ; f ). (1.2)

Throughout this paper we denote by L p(W:, ; ; [&1, 1]d ), 1�p<�,
the space of Lebesgue measurable functions with finite norm

& f &p :=\|[&1, 1]d
| f (y)| p W:, ;(y) dy+

1�p

,
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and we denote by C([&1, 1]d ) the space of continuous functions on [&1, 1]d

with supremum norm & }&� . The Jacobi expansion in one variable has been
studied extensively by many authors. We refer to [2, 7, 8, 11, 13�18, 20] and
the references there. In particular, using a convolution structure of the Jacobi
polynomials [2, 10], it follows from the boundedness of S $

n, 1(w:, ; ; f ) at x=1
[20, Theorem 9.1.3, p. 246] that &S $

n, 1(w:, ; ; f )&� is uniformly bounded
provided that $>max[:, ;]+1�2 and :+;�&1. Moreover, it was proved
in [11] (see also [1]) that the (C, :+;+2) means S :+;+2

n, 1 (w:, ; ; f ) define
a positive linear operator provided :, ;�&1�2. The purpose of the present
paper is to prove analogous results for the product Jacobi expansions. Here
are the main results.

Theorem 1.1. Let :j>&1, ;j> &1 and :j+;j�&1 for 1� j�d.
Then the Cesa� ro (C, $) means S $

n, d (W:, ; ; f ) of the product Jacobi expansion
are uniformly bounded in the norm of L p(W:, ; ; [&1, 1]d ), 1�p<�, and
the norm of C([&1, 1]d ) provided

$>$0 := :
d

j=1

max[:j , ;j]+
d
2

+max {0, & :
d

j=1

min[:j , ;j]&
d+2

2 = .

(1.3)

Moreover, if &�d
j=1 min[:j , ; j]& d

2&1>0 and :i=;i=&1�2 does not
hold for any i, then the above conclusion holds for $�$0 . In particular, for
f in L p(W:, ; ; [&1, 1]d ), 1�p<�, or in C([&1, 1]d ), S $

n(W:, ; ; f )
converges to f in norm as n � �.

Theorem 1.2. Let :j�&1�2 and ;j� &1�2 for 1� j�d. Then the
Cesa� ro (C, $) means S $

n, d (W:, ; ; f ) of the product Jacobi expansion define
a positive linear approximation identity on C([&1, 1])d if $��d

i=1 (: i+;i)
+3d&1; moreover, the order of summability is best possible in the sense
that (C, $) means are not positive for 0<$<�d

i=1 (:i+;i)+3d&1.

Some remarks are in order. Concerning the statement of Theorem 1.1,
we note that

$0= :
d

j=1

max[: j , ;j]+
d
2

, if :j , ;j�&1�2, or d=1, 2. (1.4)

In particular, for d=1, the Theorem 1.1 agrees with the result of the Jacobi
expansion in one variable. It should be mentioned that our proof is different
from that in [20].
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For d�3, the last term of (1.3) may be needed. For example, consider :j=
&1�2+1�m and ;j=&1�2&1�m, where d>m>2. Then &�d

i=1 min[:j , ;j]
&d�2&1=(d&m)�m>0.

Since :j+;j�&1 implies that max[: j , ;j]� &1�2, it follows that
$0�0 for $0 in (1.3). If :j=;j=&1�2, then $0=0 and the condition $>$0

becomes simply $>0. This extremal case corresponds to the l1 sum-
mability of the multiple Fourier series or integral (see [5, 6]), which is in
sharp contrast with the usual radial (that is, l2) means of the multiple
Fourier series or integrals (cf. [19]). The case of :=;=2m&1�2, m # N,
was discussed in [23], but the proof there depends on a representation of
the kernel in terms of finite difference, which cannot be used in the general
setting. The proof of Theorem 1.1 uses a new representation of the kernel,
derived from taking the Fourier transform of the generating function of the
product Jacobi polynomials.

These results are likely only the first step in studying the product Jacobi
expansions. One important question is to show that the index $0 is indeed
the critical index for the Cesa� ro means in the L1 norm or C norm, that
is, to show that the convergence in the norm of L1(W:, ; , [&1, 1]d ) or
C([&1, 1]d ) fails for $�$0 . In one variable setting, the weak boundedness
of the maximal Cesa� ro operators at the critical index of L p norm was
proved in [7]. Various convergence criteria of S $

n(w:, ; , f ) at the L1 critical
index $=max[:, ;]+1�2 are derived in [13], and the results are extended
to conjugate Jacobi expansions in [14, 15]. More generally, one may study
the L p critical index and almost everywhere convergence of the product
Jacobi expansions. Since our proof relies on the product convolution
structure, it does not give results in these directions. However, we should
mention that in the one variable setting, the L p critical index is obtained
from the L1 boundedness of the Cesa� ro means [2, 10] and the L p boun-
dedness of the partial sum operators ($=0) [16�18] by the interpolation
theorem of analytic families of operators [19, p. 239]; see, for example,
[8]. Hence, one possible next step is to get a sharp result for the L p

boundedness of the partial sums Sn, d (W:, ; ; f ).

2. PRELIMINARIES AND REPRESENTATION OF THE KERNEL

In this section we recall various facts about Jacobi polynomials, including
the convolution structure in [10], which leads to a product convolution
structure for the product Jacobi expansions and allows us to reduce the
proof of our theorems on [&1, 1]d to essentially one point. We also derive
a representation of the Cesa� ro kernel for the product Jacobi expansion.
The estimate of the kernel and the proof of the theorems are given in the
next section.
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Let Kn, d (W:, ; ; x, y) be the n th reproducing kernel of the space of
polynomials of degree n in L2(W:, ; , [&1, 1]d ), which is defined by

Kn, d (W:, ; ; x, y)= :
n

m=0

:
|k|=m

P (:, ;)
k (x) P (:, ;)

k (y). (2.1)

Then the partial sum operator S $
n, d (W:, ; ; f ) can be written as

Sn, d (W:, ; ; f, x)=|
[&1, 1] d

f (y) Kn, k(W:, ; ; x, y) W:, ;(y) dy.

Moreover, if we denote the Cesa� ro (C, $) means of the reproducing kernel
by

K $
n, d (W:, ; ; x, y)=\n+$

n +
&1

:
n

k=0
\n&k+$&1

n&k + Kk, d (W:, ; ; x, y), (2.2)

then the (C, $) means of the product Jacobi expansion can be written as

S $
n, d (W:, ; ; f, x)=|

[&1, 1]d
f (y) K $

n, d (W:, ; ; x, y) W:, ;(y) dy. (2.3)

First we show that a product convolution structure for the Jacobi expan-
sions allows us to write the kernel K $

n, d (W:, ; ; x, y) in terms of K $
n, d (W:, ; ;

e, y), where e=(1, 1, ..., 1). For this purpose we recall the following result
due to Gasper [10, p. 262].

Lemma 2.1. Let :, ;>&1. There is an integral representation of the
form

p(:, ;)
n (x) p (:, ;)

n ( y)= p (:, ;)
n (1) |

1

&1
p (:, ;)

n (t) d+ (:, ;)
x, y (t), n�0, (2.4)

with the real Borel measures d+ (:, ;)
x, y on [&1, 1] satisfying

|
1

&1
|d+ (:, ;)

x, y (t)|�M, &1<x, y<1,

for some constant M independent of x, y if and only if :�; and :+;�&1.
Moreover, the measures are nonnegative, i.e., d+ (:, ;)

x, y (t)�0, if and only if
;�&1�2 or :+;�0.

For further properties of the measures + (:, ;)
x, y , see [10, p. 262]. Weaker

results were obtained earlier in [2]. In the case of :�;�&1�2, an explicit
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product formula for the Jacobi polynomials was discovered by Koorn-
winder, see [12], which gives the measures explicitly. Using this formula,
the summability of the Jacobi expansions for continuous functions on the
interval [&1, 1] follows from the summability at the point x=1. From the
formula (2.4) we obtain the following formula for the product Jacobi
polynomials,

P(:, ;)
k (x) P (:, ;)

k (y)

=P (:, ;)
k (e) |

[&1, 1]d
P (:, ;)

k (t) d+ (:, ;)
x, y (t), n�0, (2.5)

where d+ (:, ;)
x, y (t)=>d

j=1 d+ (:j , ;j)
xj , yj

(t j) provided :j�;j>&1 and : j+;j�
&1. As in the one variable setting, this formula allows us to prove the
following result.

Lemma 2.2. In order to prove Theorem 1.1 it is sufficient to prove that,
for :j�; j>&1, :j+;j>&1,

|
[&1, 1]d

|K $
n, d (W:, ; ; e, y)| W:, ;(y) dy�c, e=(1, 1, ..., 1), (2.6)

where c is a constant independent of n, under the condition (1.3). In order
to prove Theorem 1.2, it is sufficient to prove that, for :j�;j�&1�2,
K$

n, d (W:, ; ; e, y)�0 on [&1, 1]d if and only if $��d
j=1 (:j+;j)+3d&1.

Proof. The reason that we can assume :j�; j lies in the formula of
Jacobi polynomials, p (:, ;)

n (x)=(&1)n p (;, :)
n (&x). To prove the norm

boundedness of S $
n(W:, ; , f ) in L1(W:, ; , [&1, 1]d ) and C([&1, 1]d ), a

standard argument shows that it suffices to prove

|
[&1, 1]d

|K $
n, d (W:, ; ; x, y)| W:, ;(y) dy�c, x # [&1, 1]d, n�0.

(2.7)

From (2.1), (2.2), and (2.5), it follows that

K $
n, d (W:, ; ; x, y)=|

[&1, 1]d
K $

n, d (W:, ; ; t, e) d+ (:, ;)
x, y (t). (2.8)

Hence, this leads to a convolution structure as in the case of one variable,
which implies that (2.7) holds if (2.6) holds; see [10, p. 264]. The case of
the norm boundedness in L p(W:, ; , [&1, 1]d ), 1<p<�, follows from the
usual interpolation argument. The statement about Theorem 1.2 follows
from (2.3), (2.8), and Lemma 2.1. K
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For d=1, the inequality (2.6) is proved in [20] using an elementary
identity [20, p. 256, (9.4.1)] which, however, has no analogy in several
variables. Moreover, (2.6) cannot be reduced to an inequality of one variable
despite the fact that it comes from a product setting. For the extreme case
:j=;j=&1�2 of the l1 sum of the multiple Fourier series, a compact for-
mula of K $

n(W:, ; ; f, x, e) is given in terms of divided differences [22]; later
a related formula in the l1 Fourier integral is given in terms of the Poisson
integral by the first author and used in [6]. Here we derive a compact
formula in the general setting from the Poisson formula, or the generating
function of the Jacobi polynomials, which is given by (see [3, p. 102,
Ex. 19; 1, p. 21])

G(:, ;)(r; x) := :
�

k=0

p (:, ;)
k (1) p (:, ;)

k (x) rn

=
1&r

(1+r):+;+2 2F1 \
:+;+2

2
,

:+;+3
2

;+1
;

2r(1+x)
(1+r)2 + ,

0�r<1, (2.9)

where 2F1 is the Gauss hypergeometric function. Using the transformation
formula

2F1(a, b; c; z)=(1&z)c&a&b
2F1(c&a, c&b; c, z), |z|<1

(cf. [9, Vol. 1, p. 64, 2.1.4 (23)]), we can write this generating function as

G(:, ;)(r; x)=
(1&r)(1+r):&;+1

(1&2rx+r2):+3�2

_2F1 \
;&:

2
,
;&:&1

2
;+1

;
2r(1+x)
(1+r)2 + , 0�r<1, (2.10)

where for :=;, the 2F1 part is taken to be 1 and we end up with the
generating formula for the Gegenbauer polynomials. This form of the
generating formula has been used to study summability in [8, 14]. From
(2.9) we get the generating function for the product Jacobi polynomials.
Let again :=(:1 , ..., :d ) and ;=(;1 , ..., ;d ). Then

:
�

n=0

rn :
|k|=n

P (:, ;)
k (x) P (:, ;)

k (e)= `
d

i=1

G(:i , ;i)(r; xi) :=G (:, ;)
d (r; x). (2.11)
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Multiplying this formula by (1&r)&$&1=��
n=0( n+$

n ) rn and using (2.1)
and (2.2), we conclude that

:
�

n=0
\n+$

n + K $
n, d (W:, ; ; x, e) rn=(1&r)&$&1 G (:, ;)

d (r; x). (2.12)

Since both sides are analytic functions of r for |r|<1, the above formula
holds for r being complex numbers. Replacing r by rei%, we get

:
�

n=0
\n+$

n + K$
n, d (W:, ; ; x, e) rne in%=(1&rei%)&$&1 G (:, ;)

d (rei%; x).

Hence, we see that ( n+$
n ) K $

n, d (W:, ; ; x, e) rn is the nth Fourier coefficient of
the function (of %) in the right hand side. Thus, we conclude the following.

Lemma 2.3. For d�1 and 0�r<1,

K $
n, d (W:, ; ; x, e)

=\n+$
n +

&1 1
?rn |

?

&?
(1&rei%)&$&1 G (:, ;)

d (rei%; x) e&in% d%. (2.13)

This representation of the Cesa� ro means is the key in the proof of
Theorem 1.1 in the following section, where we will use it to derive a sharp
estimate of K $

n, d (W:, ; ; x, e). Since the left hand side is independent of r, it
is tempting to let r � 1 and using the result of the singular oscillatory
integral to deal with the right hand side. Such an approach was used, for
example, in [21] for studying the Riesz kernel of the multiple Hermite
expansions. However, in contrast to the Hermite case, the singularities in
the product Jacobi expansions are not isolated. Indeed, the integral in the
right hand of (2.13) with r=1 has singularity whenever %=,i , where
x=cos ,i for 1�i�d, and the order of singularity increases whenever two
or more xj are equal (see, for example, Lemma 3.1). The prototype of such
singularities appears already in the case of :j=;j=&1�2, that is, the l1

Cesa� ro (or Riesz) means of the Fourier series (or integral) [4�6] which is
characteristically different from that of radial (or l2) Riesz means. In this
respect, it is interesting to note that the summability of the orthogonal
expansion on the unit ball and on the simplex in Rd is closely related to the
l2 summability [24, 25]. In the present case, instead of appealing to the
theory of singular integrals, we will use (2.13) to derive a sharp estimate of
the kernel K $

n, d (W:, ; ; x, e) by choosing r=1&n&1.
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3. PROOF OF THE THEOREMS

Throughout this section, we denote by c a generic constant independent
of n; its value may be different at different occurrence. We start with the
following result.

Lemma 3.1. For xj=cos ,j , where 0�,j�? and 1� j�d,

|K $
n, d (W:, ; , x, e)|

�
c
n$ |

?

0

\sin
%
2

+n&1+
d&$&1

`
d

j=1
\cos

%
2

+cos
, j

2
+n&1+

:j&;j+1

`
d

j=1
\} sin

%&,j

2 }+n&1+
:j+3�2

\}sin
%+, j

2 }+n&1+
:j+3�2 d%,

(3.1)

where if :j=;j for some j, the term cos %
2+cos

,j
2 is replaced by cos %

2 .

Proof. First we derive an estimate for G(:, ;)(r; x) defined in (2.10).
From [9, Vol. 1, p. 76, (9)], we have that for :, ;>&1 and :{;,

|2F1((;&:)�2, (;&:&1)�2; ;+1; z)|

�c(1+|z| )(:&;+1)�2, z # C"(1, +�).

Therefore, by (2.10), we see that the following estimate holds,

|G(:, ;)(re i%; x)|�c
|1&re i%|

|1&2re i%x+r2e2i%|:+3�2

_[|1+rei%|2+2r(1+x)] (:&;+1)�2.

Write x=cos ,, 0�,�?, and set r=1&n&1. Then we have

|1&rei%|tsin(%�2)+n&1 and |1+re i%| cos(%�2)+n&1,

where AtB means that c1�|A�B|�c2 ; for example, the first relation
follows from |1&rei%| 2=n&2+4(1&n&1) sin2(%�2). The second relation
also leads to

|1+rei%| 2+2r(1+x)t(cos(%�2)+cos(,�2)+n&1)2,

using the fact that 1+x=2 cos2(,�2). Moreover, we also have

|1&2rei%x+r2e2i%|= |1&re i(%&,)| } |1&rei(%+,)|

t( |sin(%&,)�2|+n&1)( |sin(%+,)�2|+n&1).

295PRODUCT JACOBI EXPANSIONS



Together, these relations yield that for :{;

|G(:, ;)(rei%; x)|�c
\sin

%
2

+n&1+\cos
%
2

+cos
,
2

+n&1+
:&;+1

\} sin
%&,

2 }+n&1+
:+3�2

\} sin
%+,

2 }+n&1+
:+3�2 .

If :=;, then the 2 F1 part in (2.10) is 1 and we do not have the 2r(1+x)
term in the right hand of (3.2). From this inequality and the fact that
( n+$

n )tn$, (3.1) follows from the definition of G (:, ;)
d (r; x) in (2.11) and the

representation of K $
n, d (W:, ; , x, e) in (2.13). K

For the proof of Theorem 1.1, we need to estimate the integral I (:, ;)(%)
defined by

I (:, ;)(%) :=|
?

0

\cos
%
2

+cos
,
2

+n&1+
:&;+1

\} sin
%&,

2 }+n&1+
:+3�2

\} sin
%+,

2 }+n&1+
:+3�2

_sin2:+1 ,
2

cos2;+1 ,
2

d,

if :{;, and

I (:, :)(%) :=|
?

0

cos
%
2

+n&1

\} sin
%&,

2 }+n&1+
:+3�2

\} sin
%+,

2 }+n&1+
:+3�2

_sin2:+1 ,
2

cos2:+1 ,
2

d,.

Lemma 3.2. Let :�;>&1, :+;�&1 and 0�%�?. If :{; or
:=;>&1�2,

I (:, ;)(%)�cn:+1�2(sin(%�2)+n&1):&1�2 (cos(%�2)+n&1);+1�2 ; (3.3)

and if :=;=&1�2, then

I (:, ;)(%)�c(sin(%�2)+n&1)&1 log(2+n%). (3.4)

Proof. From :�; and :+;�&1, it follows that :� &1�2. More-
over, :=&1�2 only if ;=&1�2. First we consider the case :>;, which
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implies that :>&1�2. Several estimates below use the elementary relating
sin !t! for 0�!�?�2.

Case 1: 0�%�?�2. In this case cos %
2+cos ,

2+n&1
tcos %

2t1. We
have

I (:, ;)(%)�c |
?

0

sin2:+1 ,
2

cos2;+1 ,
2

\} sin
%&,

2 }+n&1+
:+3�2

\} sin
%+,

2 }+n&1+
:+3�2 d,.

We split the integral over [0, ?] into two integrals over [0, 3%�2] and over
[3%�2, ?], respectively. On the first interval we have cos ,�2t1. For
, # [0, 3%�2], we have sin ,�2�c sin %�2 and sin(%+,)�2tsin %�2, since
%�2�(%+,)�2�5%�4. Hence, it follows from sin(%&,)�2t(%&,)�2 that

|
3%�2

0
�c

sin2:+1 %
2

\sin
%
2

+n&1+
:+3�2 |

3%�2

0

d,
( |%&,|+n&1):+3�2

�cn:+1�2(sin(%�2)+n&1):&1�2,

in which the last integral can be evaluated exactly. For later use, we notice
that if :=&1�2, then the evaluation of the integral yields a factor
log(2+n%). For ,�3%�2, we have sin(%+,)�2tsin ,�2 and sin(,&%)�2t

sin ,�2, since ,�2�(%+,)�2�5,�6 and ,�2�(,&%)�2�,�6. Hence,

|
?

3%�2
�c |

3?�4

3%�2

d,
(,+n&1)2+|

?

3?�4
cos2;+1 , d,

�c(1+(%+n&1)&1)�cn:+1�2(sin(%�2)+n&1):&1�2.

Together, these estimates show that I (:, ;)(%) has the desired estimate for
0�%�?�2.

Case 2: ?�2�%�?. Let %$=?&%. Then 0�%$�?�2. Upon change
variable , [ ?&, in the integral, we conclude that

I (:, ;)(%)=|
?

0

\sin
%$
2

+sin
,
2

+n&1+
:&;+1

\} sin
%$&,

2 }+n&1+
:+3�2

\} sin
%$+,

2 }+n&1+
:+3�2

_cos2:+1 ,
2

sin2;+1 ,
2

d,.
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If 0�%$�n&1, then %$ can be dropped in all sine functions in the integral,
and we have

I (:, ;)(%)�c |
?�2

0

sin2;+1 ,
2

\sin
,
2

+n&1+
:+;+2 d,+c |

?

?�2
cos2:+1 ,

2
d,

�cn:&;,

where if ;<&1�2, the first integral is estimated by splitting it to two
integrals over [0, n&1] and [n&1, ?�2], respectively. Since 0�%$�n&1,
cos(%�2)=sin(%$�2)�n&1, so that cn:&; gives the desired bound. For
n&1�%$�?�2, we can estimate the integral as in Case 1. On the interval
[0, 3%$�2], in addition to the relations used before, we have sin %$�2+
sin ,�2+n&1

t%$+n&1. Hence,

|
3%$�2

0
�c(%$+n&1)&;&1�2 |

3%$�2

0

,2;+1

( |%$&,|+n&1):+3�2 d,

�cn:+1�2(%$+n&1);+1�2,

where the estimate is straightforward for ;�&1�2, and for ;<&1�2, we
split the last integral as two integrals over [0, %$�2+n&1] and [%$�2+n&1,
3%$�2], respectively, and use ( |%$&,|+n&1):+3�2�c(%$+n&1):+3�2 on the
first interval and ,2;+1�c(%$+n&1)2;+1 on the second interval. Since
cos %�2=sin %$�2t%$, we have shown that the integral over [0, 3%$�2] has
the desired bound. On the interval [3%$�2, ?], in addition to the elementary
relations used in Case 1, we have sin %$�2+sin ,�2t,. Hence,

|
?

3%$�2
�c |

3?�4

3%$�2

,2;+1

(,+n&1):+;+2 d,+c |
?

3?�4
(cos ,�2)2:+1 d,

�c[(%$+n&1);&:+1]�cn:+1�2(%$+n&1);+1�2,

where we use the fact that (,+n&1)�2�,�(,+n&1), since ,�3%$�2�
n&1, to estimate the integral over [3%$�2, 3?�4].

We still have to consider the case :=;. If :>&1�2, then we can
estimate the integral just as before. In fact, the case 0�%�?�2 is identical
to the estimate in the Case 1 of :{; and the case ?�2�%�? follows from
the identity

I (:, :)(%)�(cos(%�2)+n&1)=I (:, :)(?&%)�(sin %�2+n&1).
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Finally, in the case :=;=&1�2, we have an additional log(2+n%) factor
as mentioned in the Case 1 of :{;. K

We are now in position to prove Theorem 1.1.

Proof of Theorem 1.1. By Lemma 2.2, it suffices to establish (2.6) under
the condition (1.3) and :j�;j , 1� j�d. Moreover, the proof of
Lemma 2.2 shows that we can assume that :j�;j for 1� j�d. Let m be
the number of pairs [:j , ;j] such that :j=;j=&1�2. Throughout the rest
of the section, we write \(:)=�d

j=1 :j . Then, it follows from Lemma 3.1
and Lemma 3.2 that

|
[&1, 1]d

|K $
n(W:, ; ; x, e)| W:, ;(x) dx

�
c
n$ |

?

0
(sin(%�2)+n&1)d&$&1 `

d

j=1

I (:j, ;j)(%) d%

�cn\(:)+d�2&$ |
?

0
(sin(%�2)+n&1)\(:)+d�2&$&1

_(cos(%�2)+n&1)\(;)+d�2 logm(2+n%) d%,

which, upon splitting the integral to two integrals over [0, ?�2] and
[?�2, ?], respectively, and changing variable in the integral over [0, ?�2],
becomes

�c |
n?�2

0
(u+1)\(:)+d�2&$&1 logm(1+u) du

+cn\(:)+d�2&$ logm n |
?

?�2
(cos(%�2)+n&1)\(;)+d�2 d%.

The first integral is finite if and only if \($)+d�2&$<0, or $>\(:)+d�2.
Under this condition, the second integral is also bounded if \(;)+d�2
�&1. However, if \(;)+d�2<&1, then the second integral is bounded
by

cn\(:)+d�2&$n&\(;)&d�2&1 logm n=cn\(:)&\(;)&$&1 logm n,

which is bounded if $>\(:)&\(;)&1, or $�\(:)&\(;)&1 when m=0.
The condition \(;)+d�2<&1 implies that \(:)&\(;)&1>\(:)+d�2.

K

It is worthwhile to mention that the above proof gives an alternative
proof for Theorem 9.1.3 of [20, p. 246].
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Proof of Theorem 1.2. By Lemma 2.2, we only need to prove that, for
:j�;j , the kernel K $

n, d (W:, ; ; x, e)�0 if and only if $�\(:)+\(;)+
3d&1. For d=1, it follows from [11] that the (C, :+;+2) means
K :+;+2

n, 1 (w:, ; ; x, 1) is nonnegative for &1�x�1. Hence, by (2.12) with
d=1, the function (1&r)&:&;&3 G(:, ;)(r; x) is a completely monotone
function of r; that is, a function whose power series has all nonnegative
coefficients. Since multiplication is closed in the space of complete mono-
tonic functions, it follows that

(1&r)&\(:)&\(;)&3d G (:, ;)
d (r; x)= `

d

j=1

(1&r)&:j&;j&3 G (:j , ;j )
d (r; xj)

is a complete monotone function. Consequently, by (2.12), we conclude
that the means K \(:)+\(;)+3d&1

n, d (W:, ; ; x, e)�0. We now prove that the
order of summation cannot be improved. If the (C, $0) means are positive,
then the (C, $) means are positive for $�$0 . Hence, we only need to show
that the (C, \(:)+\(;)+3d&1&=) means of the kernel are not positive
for 0<=<1. From (2.9) and the fact that 2F1(a, b; c; 0)=1, we conclude
that for $=\(:)+\(;)+3d&2,

(1&r)&$&1 G (:, ;)
d (r; &e)=(1&r)(1&r2)&\(:)&\(;)&2d

= :
�

k=0
\\(:)+\(;)+2d+k&1

k + r2k

& :
�

k=0
\\(:)+\(;)+2d+k&1

k + r2k+1.

Therefore, setting Ak=( k+\(:)+\(;)+3d&2
k ) K \(:)+\(;)+3d&2

k, d (W:, ; ; &e, e)
and comparing with (2.12), we conclude that

A2k=&A2k+1=\\(:)+\(;)+2d+k&1
k +�0.

Therefore, it follows that

\2n+1+\(:)+;(;)+3d&1&=
2n&1 + K \(:)+\(;)+3d&1&=

2n+1, d (W:, ; ; &e, e)

= :
2n+1

k=0
\2n&k&=

2n+1&k+ Ak=&= :
n

k=0

1
2n&2k+1 \

2n&2k&=
2n&2k + A2k .

Since 0<=<1, we conclude that the (C, \(:)+\(;)+3d&1&=) means
are not positive. K
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